

KCP Gear Coupling follows the international standards of AGMA and JIS, which easily allows to replace with major industrial products. Our Gear coupling compensates angular misalignment, parallel misalignment and end float. The fully crowned hub teeth provide minimum loading stress, and ensure longer life.

1. Characteristics

1. High torque, small size, long life and very little loss of transmitting power.

2. The concave-convex flange design allows easy assembly and the high quality gasket prevents leakage of lubricant.

3. Gear Coupling permits parallel, angular misalignments and end floating by crown gear teeth.

- Parallel Misalignment

The driving and driven shafts are not parallel to each other, but not on the same straight line.

- Anglular Misalignment

The driving and driven shafts installed with an limited angle.

- End Floating

The driving and driven shafts slide slightly along with the gear teeth.

- Composite Misalignment

In most of cases, above 3 misalignments appear with mixed in general use

COUPLINGS

BOOK 3: COUPLINGS & SHAFT FIXINGS

Allowable Misalignment

Size	100	150	200	250	300	350	400	450	500	550	600	700	800	900	1000	1100	1200
(mm)	12	1.3	1.7	2.1	2.4	2.9	3.2	3.5	4.1	4.5	5	5.9	6.7	7.4	8.2	12.7	12.7
°()	3(1.5)	3(1.5)	3(1.5)	3(1.5)	3(1.5)	3(1.5)	3(1.5)	3(1.5)	3(1.5)	3(1.5)	3(1.5)	2(1)	2(1)	2(1)	2(1)	2(1)	2(1)

The couplings made of S45C has a good endurance to high speed and peak load. Consult us for special materials, if required.
Customer's requirements of special design can be acceptable

2. Structure

BOOK 3: COUPLINGS & SHAFT FIXINGS

- 1. Internal Gear (Rounded Sleeve)
- 2. Crown Gear (Crown Gear Hub)
- 3. Reamer Bolt or AGMA Bolt
- 4. Gasket
- 5. O-ring
- 6. Spring Washer
- 7. Hex Bolt & Nut

* The crowned hub teeth provide larger contact area and decrease the stress

3. Application

- 1. Heavy load, but compact design coupling.
- 2. High speed up to 5,000rpm (Depending on size, refer to the data)
- 3. Low speed, but high starting torque
- 4. End float application
- 5. Spacer required, due to longer distance between shaft ends
- 6. Low load and light weight application is not recommendable.

4. Standard Material

INTERNAL GEAR	CROWN GEAR	FLANGE	Bolt	O-ring
	SM 45C-N		SM 45C-H	NBR

- Special material and/or special treatment is required under the unusual application environments, such as high speed, high or low temperature, chemicals corrosiveness, medium load stress.

- Under the heavy load, high speed and corrosive environment, special materials shall be required.

5. Selection of Method Size

1. Selection

Using the following formula, Design Torque required

T = 97,400
$$\frac{kw}{N} \times S.F$$
 또는 T = 71,620 $\frac{HP}{N} \times S.F$
T = Design torque (kg mm)
kw = Power (kw)
HP = Power (HP)
N = Working revolution (rpm)
S.F = Recommended Service
Factor

Select the size with the same or with the greater value at the Basic Torque column, Refer to the maximum shaft diameters of the size selected, and then compare the shaft diameters of the application with the max. bore dia of the size selected. If the coupling bore is not suitable, select the larger size coupling.

3. Example

1 2. 3.

Select Gear Coupling to connect 450HP 1,170 rpm electric meter with reducer. Motor shat diameter is 80rcm, Reduce shaft diameter is 900mm,Max parallel alignment is 1.5mm.

- Select type KGDB for higher valued application of parallel misalignment. Service factor is 2.0
- Use the normal formula

Size KGDR25 is selected with rating of 90HP per 100rpm.To apply larger shaft dia 900mm, finally KGDE 30 is selected.

6. Designation

Double Engagement = provides standard engagement for parallel & angular misalignment as well as end float, with the ability to accomodate close coupled applications.

2 x CGH, 2 x FS, 1 x Kit

Single Engagement = accomoadates anfular misalignment only and does not allow for parallel misalignment. 1 x CGH, 1 x RH, 1 x, FS, 1 x Kit

Gear Couplings

7. Instruction for Installation

1. Small Size cup (up to 60)

Hub bore and keyway must be machined accurately. During the key fit to the shaft and this hub, be careful with the oil leakage.

1. Clean all parts, Gears the crowned gear teeth and O-Ring. Put O-Ring onto the shaft.

2. Place the flanged sleeves on the shafts and mount the hubs

3. Using a spacer bar, make the gap between the hubs equal to the normal gap specified.

4. Align the shaft with a strait bar by checking every 90 degrees, referring to the table 3. Make it sure with a dial gauge not to exceed the affect limit.

5. Insert gasket between the flanged sleeves and fasten the bolts, positioning the lube plug at 90 degree

6. Fill grease until overflowing at the open opposite Lube plug hole.

Fig. 3 Operating Limits of misalignment (mm)

Size	10	15	20	25	30	35	40	45	50	55	60	70	80	90	100
Angular degree	0.125	0.125	0.25	0.25	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4
Gap	3	3	3	4.5	4.5	6	6	8	8	8	8	9.5	10	13	13
Flange Bolt Torque(km·cm)	96	320	480	960	960	1650	1650	1650	2070	2070	2070	2980	-	-	-

3

The life of coupling is reduced by excess of the OFFSET limit

3.1.35

Gear Couplings

2 Large Size (over size 70)

Hub bore and keyway must be machined accurately. During the Key-Fit work, be careful the Internal Gear does not leak oil.

1. Clean all parts. Pack with grease and seals with grease before assembly

 Place the side covers with sealing gaskets on the shafts before mounting the crown gears. Mount crown gears on their respective shafts.
Mount Internal Gears with side covers gaskets

3. Use a spacer bar equal into the gap. The difference in minimum and maximum measurements should not exceed the angular limit specified in table 3.

4. Align with a straightedge, rest squarely at every 90 degrees as shown in photo. The tolerance should not exceed the offset limit specified in Table 3

5. Insert gasket between flange. Position Internal Gears with lube holes at about 90 degrees and then fasten the bolts & nuts.

6. Remove all lube plugs and fill recommended grease into the coupling until excess flow through the opposite lub plug hole. And screw down plugs.

COUPLINGS

8. Selection on Puller Holes

표4		Table4
Size	BCD	Tap Size
20KG	89	M8
25KG	112	M10
30KG	128	M10
35KG	152	M12
40KG	181	M16
45KG	200	M16
50KG	216	M20
55KG	238	M20
60KG	268	M20
70KG	305	M24
80KG	318	M24
90KG	356	M30
100KG	394	M30
110KG	426	M30
120KG	498	M30

9. Lubrication & Handling

With the appropriate lubricant information, the coupling will have good performance and long life.

1. Lubricant

1. Grease the Internal gear teeth and crown gear teeth, and fill enough lubricant Grease.

2. Supplement and Replacement:

Add grease every month or every 240-250 hours operating.

Renew all the contaminated grease every 3 month or every 4000 hours operating 3. Selection

Allowable temperature of grease is from 17°C to 70°C. Refer to the table 6 (pg. 3.1.37) that shows the coupling RPM allowed fix the listed grease.

Company/Oil	Grease # 1	Grease # 0
Gulf Oil Corp.	Gulfcrown Grease EP #1	Gulfcrown Grease EP #0
Shell Oil Corp.	Alvania Grease EP #1	Alvania Grease EP-RO
Texaco Inc.	Multifak EP - 1	Multifak EP - O
Mobil Oil Corp.	Mobilux EP - 1	Mobilux EP - O

Note: Lubricants listed in this manual are typical products.

Gear Couplings

2. Lubricant Filling

1. Place the Lube plug holes 2EA horizontal level. Fill up Lubricant until it overflows from the opposite hole.

2. Supplement every month, or 240-250 hours operating.

3. Replace completely all the contaminated lubricant, every 3 months or every 4,000 hours operating.

3.	Sel	ection	of	Lubricant
<u> </u>		cccion	<u>.</u>	Labricarie

Table 6

Com	-	Shell	Mobil	Michang	Buhmwoo	Gulf	Fujikosan Nipponkoju	Houghton	ŀ	lanil	Caltex
CST	CST	omala 68	Mobilgear 626	Pio Gear EP 68	Buhmwoo Gearlube	Gulf EP Lubricant	Hirax ME GO 300	MP Gear Oil 68	Nico Gear SP 68	Daphne CE compound	Meropa Lubricant
40 C	40 C	-			BG-68	R 68				68C	68
100	465	omala 68		Pio Gear EP 68	Buhmwoo Gearlube BG-100	Gulf EP Lubricant HD 100	Hirax ME GO 500	MP Gear Oil 100	Nico Gear SP 100	Daphne CE compound 100S	Meropa Lubricant 100
150	700	omala 150	Mobilgear 629	Pio Gear EP 150	Buhmwoo Gearlube BG-150	Gulf EP Lubricant R150, HD150	Hirax ME GO 700	MP Gear Oil 150	Nico Gear SP 150	Daphne CE compound 150S	Meropa Lubricant 150, Synthetic Gear Lube
150	700	omala 220	Mobilgear 630	Pio Gear EP 220	Buhmwoo Gearlube BG-220	Gulf EP Lubricant R220, HD220	Hirax ME GO 1000	MP Gear Oil 220	Nico Gear SP 220	Daphne CE compound 220S	Meropa Lubricant 220
320	1500	omala 320	Mobilgear 632	Pio Gear EP 320	Buhmwoo Gearlube BG-320	Gulf EP Lubricant R320, HD320	Hirax ME GO 1500	MP Gear Oil 320	Nico Gear SP 320	Daphne CE compound 320S	Meropa Lubricant 320

Gear Couplings

Type G20

Type g20, (Double Gear) Gear Coupling-AGMA

	Type G20 Standard Flanged Sleeve								Dimension(inch)						
Size	HP per 100 rpm	Torque Rating (lb-in)	Allow Speed rpm	Max bore da	Min bore da	Cplg Wt(lb) G20	Lube wf Ib	A	В	С	D	E	J	Gap	
1010G	16	10,080	8,000	1,875	50	10	.09	4.56	3.50	1.69	2.70	3.30	1.53	.125	
1015G	33	20,790	6,500	2,375	75	20	.16	6.00	4.00	1.94	3,40	4.14	1.88	.125	
1020G	60	37,800	5,600	2,875	1.00	35	.25	7.00	5.00	2.44	4.14	4.98	2.34	.125	
1025G	105	66,150	5,000	3,625	1.25	65	.50	8.38	6.25	3.03	5.14	6.10	2.82	.188	
1030G	170	107,100	4,400	4,125	1.50	95	.80	9.44	7.37	3.59	6.00	7.10	3.30	.188	
1035G	260	163,800	3,900	4,875	2.00	150	1.20	11.00	8.63	4.19	7.00	8.32	3.84	.250	
1040G	430	270,900	3,600	5,750	2.50	215	2.00	12.50	9.75	4.75	8.25	9.66	4.38	.250	
1045G	590	371,700	3,200	6,750	3.00	300	2.30	13.62	10.93	5.31	9.25	10.79	4.84	.312	
1050G	795	500,900	2,900	7,375	3.50	420	3.90	15.31	12.37	6.03	10.00	12.04	5.54	.312	
1055G	1,040	655,200	2,650	8,250	4.00	550	4.90	16.75	13.56	6.62	11.00	13.16	6.22	.312	
1060G	1,270	800,100	2,450	9,125	4.50	675	7.00	18.00	15.13	7.41	12.00	14.41	6.66	.312	
1070G	1,900	1,197,000	2,150	10,875	5.00	1070	9.60	20.75	17.75	8.69	14.00	16.73	7.70	.375	

		Туре	G20 Sta	andard F	langed S	Sleeve		Dimension(inch)						
Size	Torque Ib-in(m 1000	Rating nillions) 2000	Allow Speed	Max bore	Min	Cplg Wt(lb)	Lube wf	A	в	с	D	J	к	Gap
	Series	Series	rpm	ua	ua	020	di							
1080G	1,506	2,070	1,750	10.50	4.000	1150	21	23.25	20.02	9.82	14.00	9.56	22.50	.375
1090G	1,997	2,791	1,550'	11.25	4.500	2170	27	26.00	22.26	10.88	15.50	10.44	25.25	.500
1100G	2,747	3,919	1,450'	12.75	5.000	2870	33	28.00	24.50	12.00	17.50	11.56	27.50	.500
1110G	3,654	5,393	1,330	14.00	5.500	3700	39	30.50	26.74	13.12	19.50	12.69	29.50	.500
1120G	4,914	6,880	1,200	15.25	6.000	4660	46	33.00	28.26	13.88	21.50	13.44	32.50	.500

<u>COUPLINGS</u>

1. Characteristic & Merits

You can get more favourable convenience and count down by using KCP Taper Grip Steel Flexible Coupling

- Parallel Misalignment

The movement of the grid in the lubricated grooves accommodates parallel misalignment and permits full functioning of the grid-groove action in damping out shock and vibration.

- Angular Misalignment

Under angular misalignment, the grid-groove design permits a rocking and sliding action of the lubricated grid and hubs without any loss of power through the resilient grid

- End Floating

Unrestrained end float of driving and driven members is permitted because the grid slides freely in the lubricated grooves

- Torsional Flexibility

Torsional flexibility is the advantage of KCP Taper Grid Couplings, providing flexible accommodation to changing load conditions.

KCP Taper Grid coupling creates the excellent performance as shown below.

1. Grid in Light Load

The grid bears near the outer edges of the hub teeth. The long span between the points of contact remains flexible under load variations.

2. Grid in Normal Load

As the load increases, the distance between the contact points on the hub teeth is shortened, but a free span still remains flexible for shock loads.

3. Grid in Shock Loads

The coupling is flexible within its rated power capacity. Under extreme overloads, the grid bears and transmits full load on the hub teeth directly.

COUPLINGS

The absorption of mechanical vibration of Taper Grid coupling

MERITS

- 1. When overload occurs, grid breaks and prevents breaking shaft or machinery parts conneted.
- 2. When the parallel misaignment is too severe, the relating machine is protected by the virtue of shearing Grid on Tooth.
- 3. The life of parts(Mechanical Seal and Bearing, etc) can be extended as twice or more.
- 4, Quick installation and easy maintenance reduce labor cost and down-time cost.
- 5. KCP Grid coupling is interchangeable with international major brands.
- 6. It always transimits the power fully(100%) in low noise.
- 7. You can use it at cheaper maintenance cost by changing damaged parts only.

2. Application

Pin-Bush Flange coupling and Chain Couplings have usually been used, but now using the KCP TAPER GRID COUPLINGS, you will get many benefits

- 1. When reduction of vibration and shock load is required.
- 2. When adequate power transmission under line misalignment is required.
- 3. When adequate power transmission under angular misalignment is required.
- 4. When adequate power transmission under end floating is required.
- 5. When it is necessary to prevent machinery part breakage under overload.
- 6. When reverse revolution is required.
- 7. When a smooth start is required.

3. Structure

5. Selection of Method

1. Selection of Method size

By using the following formula, obtain Design Torque required.

T = 97,400
$$\frac{kW}{N}$$
 × S.F T = 71,620 $\frac{HP}{N}$ × S.F

 $T = Design torque(kg \cdot cm)$ kw = Power(kw) HP = Power(HP) N = Working revolution(rpm) $S \cdot F = Recommended service factor.$

- Select the size with the same or with the greater value at the Basic Torque column, Refer to the maximum shaft diamers of the size selected, and then compare the shaft diameters of the application with the max. bore dia of the size selected. If the coupling bore is not suitable, select the larger size coupling.

- Special requirements

A. on calculating the torque required, use the lowest operating speed (N) of the application

B. If there are reverse motions repeated or frequent irregular kind changes, take service factor twice.

2.Example

When you select a COUPLING to connects 30HP, 1,1750rm motor and rotary type pump. Motor shaft dia is 48mm and pump's 52mm.

service factor of pump is 1.8

Torque(kg · cm) =
$$\frac{30 \times 71.620 \times 1.8}{1.750}$$
 = 2.210

Normal transmitting power is 30HP

The coupling size 1040 accepts the calculated torque $2210 \cdot$. And then compare the application shaft diameter sizes(52mm) to the maximum bore of the selected coupling size 1040(43 mm).

You will select the coupling size 1060 accepting upto 55mm shaft dia meter. The size also accepts the application motor speed 1750 rpm. Either H or V cover is available. Finally, the coupling size 1060 is selected.

6. Installation

Туре Н

Type V

7. Installation

KSFS

Every effort has been taken to ensure that the data listed in this catalogue is correct. Finer Power Transmissions P/L will not accept liability for any damage or loss caused as a result of the data in this catalogue.

fig. 3 misalignment capacity

	Recomme	nded installation	Op	perating	Normal
Size	Parallel offset p	Angular(1/16°) X - Y	Parallel offset p	Angular(1/4°) X - Y	gap ±10%
1020	0.15	0.08	0.3	0.25	3
1030	0.15	0.08	0.3	0.30	3
1040	0.15	0.08	0.3	0.33	3
1050	0.20	0.10	0.4	0.41	3
1060	0.20	0.13	0.4	0.46	3
1070	0.20	0.13	0.4	0.51	3
1080	0.20	0.15	0.4	0.61	3
1090	0.20	0.18	0.4	0.71	3
1100	0.25	0.20	0.5	0.84	5
1110	0.25	0.23	0.5	0.91	5
1120	0.28	0.25	0.56	1.02	6
1130	0.28	0.30	0.56	1.19	6
1140	0.28	0.33	0.56	1.35	6
1150	0.30	0.41	0.6	1.57	6
1160	0.30	0.46	0.6	1.78	6
1170	0.30	0.51	0.6	2.01	6
1180	0.38	0.56	0.76	2.26	6
1190	0.38	0.61	0.76	2.46	6
1200	0.38	0.69	0.76	2.72	6

The life of coupling is reduced by excess of the limit.

8. Specification of Puller Holes

BOOK 3: COUPLINGS & SHAFT FIXINGS

CPLG Size	B.C.D. (mm)	Bolt Size	CPLG Size	B.C.D. (mm)	Bolt Size
1070	74	M8	1150	227.5	M20
1080	89.5	M8	1160	260	M20
1090	106	M10	1170	306	M24
1100	121.5	M10	1180	341	M30
1110	136.5	M10	1190	373	M30
1120	150.5	M12	1200	414	M30
1130	185	M16	1210	540	M30
1140	205	M16	1220	570	M30

NB. Finer Power stocks up to 1150. larger sizes available on request

9. Lubrication and Handing

Choose high qualty lubricant for KCP Taper Grid Couplings for good performance and long life.

1. Grease Lubrication

Grease on the grid & hub teeth before assembling covers. Fill up grease through the lube plug of the assembled coupling.

2. Supplement

Add new grease every three months or 240-250 hours of operation

3. Replacement

Every 3 months, or every 4,000 hours operating you should replace all the deteriorated grease.

4. Selection

Choose grease according to the ambient temperature range in table 5.

Common Industrial Lubricants(NYGL Grade #2)

Table5

	Ambient Ten	nperature Range:
Manufacture	0°F to 150°F (-18°C to 66°C)	-30°F to 100°F (-34°C to 38°C)
Amoco Oil Co.	Amolith Grease #2	Amolith Grease #2
Atlantic Richfield co.	Litholene HEP 2	Litholene HEP 2
Chevron U.S.A Inc.	Chevron Dura-Lith EP-2	Chevron Dura-Lith EP-2
Cities Service Co.	Citgo HEP-2	Citgo HEP-2
Conoco Inc.	EP Conolith #2	EP Conolith #2
Exxon Company, USA	Ronex MP	Ronex MP
Gulf Oil Corp.	Gulfcrown Grease #2	Gulfcrown Grease #2
E.F.Houghton & Co.	Cosmolube #2	Cosmolube #1
Impenrial Oil Ltd.	Esso MP Grease H	Lotemp EP
Keystone Div.(Pennwalt)	#81 Light	#84 Light
Mobil Oil Corp.	Mobilux EP111	Mobilux #1
Phillips Petroleum Co.	IB & RB grease	Philube IB & RB grease
Shell Oil Co.	Alvania Grease #2	Alvania Grease #2
Standard Oil Co.(OH)	Factran #2	Factran #2
Sun Oil Company	Prestige 42	Prestige 42
Texaco Lubricants	Starplex HD 2	Multifac EP2
Union Oil Co.(CA)	Union Undoba #2	Union Undoba #2
Valvoline Oil Co.	Val-Lith EP #2	Val-Lith EP #2

Note: For feed processing in dustry, check with lube manufacture for approved lubricants.

Finer Power Transmissions PAL | www.finerpt.com

10. Dimensions

Type H (Horizontal Split Aluminium Cover)

Size	HP Per Size 100		Basic	Bor (r	e Dia mm)		Dim	nension(mm)			Gap(mm)		Cplg	Lube	Size
0120	rpm	(rpm)	(kg · cm)	Max.	Min.	А	В	С	D	Е	Min.	Normal	Max.	Wt(kg)	(kg)	0120
1020H	0.68	4,500	486	30	00012	101.6	098.0	047.5	039.7	066.5	1.5	3	4.5	1.9	0.03	1020
1030H	1.93	4,500	1,383	35	00012	110.0	098.0	047.5	049.2	068.3	1.5	3	4.5	2.6	0.03	1030
1040H	3.22	4,500	2,304	43	00012	117.5	104.6	050.8	057.1	070.0	1.5	3	4.5	3.4	0.05	1040
1050H	5.63	4,500	4,033	50	00012	138.0	123.6	060.3	066.7	079.5	1.5	3	4.5	5.4	0.05	1050
1060H	8.85	4,350	6,337	55	00019	150.5	130.0	063.5	076.2	092.0	1.5	3	4.5	7.3	0.09	1060
1070H	13	4,125	9,217	65	00019	161.9	155.4	076.2	087.3	095.0	1.5	3	4.5	10	0.11	1070
1080H	27	3,600	19,010	78	027.0	194.0	180.8	088.9	104.8	116.0	1.5	3	4.5	18	0.17	1080
1090H	48	3,600	34,564	95	027.0	213.0	199.8	098.4	123.8	122.0	1.5	3	6	25	0.25	1090
1100H	81	2,400	58,183	107	00041	250.0	245.7	120.6	142.0	155.5	1.5	3	6	42	0.43	1100
1110H	121	2,250	86,411	117	00041	270.0	258.5	127.0	160.3	161.5	1.5	4.5	9.5	54	0.51	1110
1120H	177	2,025	126,736	136	00060	308.0	304.4	149.2	179.4	191.5	1.5	4.5	9.5	81	0.73	1120
1130H	257	1,800	184,343	165	00067	346.0	329.8	161.9	217.5	195.0	1.5	6	12.5	121	0.91	1130
1140H	370	1,650	264,993	184	00067	384.0	371.6	182.8	254.0	201.0	1.5	6	12.5	178	1.13	1140
1150H	515	1,500	368,686	203	00108	453.1	371.8	182.9	269.2	271.3	1.5	6	12.5	234	1.95	1150
1160H	724	1,350	518,465	228	120.7	501.4	402.2	198.1	304.8	278.9	1.5	6	12.5	317	2.81	1160
1170H	965	1,225	691,286	279	133.4	566.4	437.8	215.9	355.6	304.3	1.5	6	12.5	448	3.49	1170
1180H	1,338	1,100	958,584	311	152.4	629.9	483.6	238.8	393.7	321.1	1.5	6	12.5	619	3.76	1180
1190H	1,770	1,050	1,267,358	339	152.4	675.6	524.2	259.1	436.9	325.1	1.5	6	12.5	776	4.40	1190
1200H	2,413	900	1,728,216	361	177.8	756.9	564.8	279.4	497.8	355.6	1.5	6	12.5	1,057	5.62	1200
1210H	3,230	820	2,304,288	366	177.8	844.5	622.3	304.8	533.4	431.8	3.0	13	24.0	1,424	10.50	1210
1220H	4,350	730	3,110,788	411	203.2	820.7	622.9	325.0	571.5	490.2	3.0	13	24.0	1,784	16.05	1220
1230H	5,640	680	4,438,775	450	250.0	1,003.3	703.8	345.4	609.6	546.1	3.0	13	24.0	2,267	24.00	1230

Coupling weight, with unbored hub assembly.

NB. Finer Power stocks up to 1150. Larger sizes available on request.

Type V (Vertical Split Steel Cover)

Size	HP Per Size 100		Basic Torque	Bore (r	e Dia m)		Dim	ensions	(mm)			Gap(mm)		Cplg	Lub Wt	Size
0120	rpm	(rpm)	(kg · cm)	Max.	Min.	А	В	С	D	Е	Min.	Normal	Max.	Wt(kg)	(kg)	CILC
1020	0.68	6,000	486	30	012.7	111.1	098.0	047.5	039.7	024.2	1.5	3	4.5	2.0	0.03	1020
1030	1.93	6,000	1,383	36	012.7	120.7	098.0	047.5	049.2	025.0	1.5	3	4.5	2.6	0.03	1030
1040	3.22	6,000	2,304	44	012.7	128.5	104.6	050.8	057.1	025.7	1.5	3	4.5	3.4	0.05	1040
1050	5.63	6,000	4,033	50	012.7	147.6	123.6	060.3	066.7	031.2	1.5	3	4.5	5.4	0.05	1050
1060	8.85	6,000	6,337	57	019.1	162.0	130.0	063.5	076.2	032.2	1.5	3	4.5	7.3	0.09	1060
1070	13	5,500	9,217	65	019.1	173.0	155.4	076.2	087.3	033.7	1.5	3	4.5	10.4	0.11	1070
1080	27	4,750	19,010	79	027.0	200.0	180.8	088.9	104.8	044.2	1.5	3	4.5	17.7	0.17	1080
1090	48	4,000	34,564	95	027.0	231.8	199.8	098.4	123.8	047.7	1.5	3	6	25.4	0.25	1090
1100	81	3,250	58,183	107	041.3	266.7	245.7	120.6	142.0	060.0	1.5	3	6	42.2	0.43	1100
1110	121	3,000	86,411	117	041.3	285.8	258.5	127.0	160.3	064.2	1.5	4.5	12.5	54.4	0.51	1110
1120	177	2,700	126,736	136	060.3	319.0	304.4	149.2	179.4	073.4	1.5	4.5	12.5	81.6	0.73	1120
1130	257	2,400	184,343	165	066.7	377.8	329.8	161.9	217.5	075.1	1.5	6	12.5	122.5	0.91	1130
1140	370	2,200	264,993	184	066.7	416.0	371.6	182.8	254.0	078.2	1.5	6	12.5	180.1	1.13	1140
1150	515	2,000	368,686	203	108.0	476.3	371.8	182.9	269.2	106.9	1.5	6	12.5	230.0	1.95	1150
1160	724	1,750	518,465	228	120.7	533.4	402.2	198.1	304.8	114.3	1.5	6	12.5	321.1	2.81	1160
1170	965	1,600	691,286	279	133.4	584.2	437.8	215.9	355.6	119.4	1.5	6	12.5	448.2	3.49	1170
1180	1,338	1,400	958,584	311	152.4	630.0	483.6	238.8	393.7	130.0	1.5	6	12.5	591.0	3.76	1180
1190	1,770	1,300	1,267,358	339	152.4	685.0	524.2	259.1	436.9	135.0	1.5	6	12.5	761.0	4.40	1190
1200	2,413	1,100	1,728,216	361	177.8	737.0	564.8	279.4	497.8	145.0	1.5	6	12.5	1.021.0	5.62	1200

* Coupling weight without Bore machining

KW10 Type

					Cplg V	Vt (Kg)		6Dimensions (mm)											C Fas	over teners	
Size	Torque Rating	Allow Speed	Max Bore	Min Bore			ļ	4	A/	4											
	(Nm)	PRM	(mm)	(mm)	Nylon Cover	Steel Cover	Nylon	Steel	Nylon	Steel	В	BE	С	D		н	J	Z	GAP	Size	Allen Wrench
5	62	4500	38	12.7	1.35	1.49	76.5	76.5	80.5	80.4	71.9	19.8	25.9	59.9	64	15.0	23.1	8.9	2	M4	M2.5
10	130	4500	48	15.88	2.49	2.72	90.4	90.4	94.5	94.4	91.9	23.9	34.0	72.1	75.9	19.1	27.9	10.9	2	M4	M2.5
20	316	4500	60	19.05	5.64	6.09	126.0	124.0	132.0	130.0	121.9	32.0	45.0	91.9	102.1	24.9	37.1	15.0	2	M6	M4
30	520	4500	65	25.40	9.41	10.00	146.6	143.0	153.0	149.0	151.9	36.1	57.9	104.9	118.1	29.0	41.9	17.0	2	M6	M4
40	1028	3600	85	28.58	17.10	18.10	182.1	177.0	190.0	185.0	181.1	47.0	67.1	130.0	150.1	34.0	54.6	21.1	5	M8	M5
50	2508	3000	105	31.75	35.80	37.70	230.9	224.0	239.0	232.0	214.9	60.7	77.0	178.1	190	46.0	69.6	27.9	5	M8	M5
60	4011	2500	135	50.80	-	66.40	-	267.0	-	278.0	275.3	75.4	100.1	209.6	228.1	60.2	67.1	35.3	5	M10	M6

Couplings Comparison Chart

Selection Criterion	Rigid	Chain	Gear	Taper Grid	Curved Tooth Gear	HRC	Jaw	Flexible Jaw	Flexible Pin Couplings	Curved Jaw (Rotex)	Cone Ring	Tyre	Max Dynamic
Torque Range (Nm)	Up to 11300	217- 8786	1138- 135242	47-25980	18-160	31-3150	3.5-280	12.74-470	19000- 360000	10-3600	50-15140	24-3770	21-19230
Speed Capability	Fair	Good	Excellent	Excellent	Fair	Good	Good	EXCELLENT	GOOD	Excellent	Fair	Good	Excellent
Shaft Size Range - mm	11mm- 125mm	14mm- 110mm	13mm- 255mm	12mm- 184mm	8mm- 41mm	25mm- 90mm	14mm- 60mm	7MM - 55MM	19-60	6mm- 100mm	12mm- 150mm	10mm- 75mm	35mm-124mm
Bore Types	Taperlock	Pilotbore	Pilotbore	Pilotbore	Pilotbore	Taperlock & Pilotbore	Pilotbore + Bore & Keyed Range	PILOT BORE	PILOT BORE	Taperlock & Pilotbore	Taperlock & Pilotbore	Taperlock	Pilotbore & Taperlock
Misalignment Capability (Maximum Angular - Deg.)	0	1	1.5	0.25	3-5	0.2-1.7	1	1	.1510	0.8-1.2	0.2-1.7	4	4
Temperature Range Standard Element	-10C to +60C	-10C to +60C	-40C to +100C	-18C to +70C	-25C to +66C	-40C to +100C	-40C to +100C	"-40C TO + 100C"	"-40C TO + 80C"	-4C to +120C	Up to +70C	-50C to +50C	Up to +120C
Ease of Installation	Easy	Easy	Fair	Fair	Easy	Easy	Easy	EASY	FAIR	Easy	Easy	Fair	Fair
Damping Capacity	Poor	Fair	Poor	Fair	Poor	Good	Good	EXCELLENT	GOOD	Good	Good	Excellent	Excellent

BARE ESSENTIALS CHECKLIST FOR DRIVE SELECTION:

	CO	וחו	I ECTIC
COO. E. 10 DEEEC. 10	CU	UPL	

Power (kw or Hp) Speed (RPM)

Shaft Sizes

Once you have this information you can contact the team at Finer Power Transmission to help you select the appropriate drive.

CONVERSION CONSTANTS

Length
Millimetres x 0.039370 = inches
Metres x 39.370 = inches
Metres x 3.2808 = Feet
Kilometres x 0.6213 = Miles
Inches x 25.4001 = Millimetres
Inches x 0.0254 = Metres
Feet x 0.30480 = Metres
Miles x 1.61 = Killometres
Power
Kilowatt (kw) x 1.340 = horse power (hp)
Horse Power (hp) x 0.746 = kilowatt (kw)
Torque
Newton metre (Nm) x 0.735 = Pounds feeet (lbf ft)
Newton metre (Nm) x 8.85 = Pounds inches (lbf in)
Kilogram force metre (kgf m) x 9.81 = Newton metre (Nm)
Weight
Kilogram (kg) x 2.20462 = Pound (lb)
Metric Ton (1000kg) × 0.98421 = Ton (2240lb)

FINERPOWER TRANSMISSIONS

Finer Power Transmissions _{P/L} | www.finerpt.com

COUPLINGS